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Abstract

It is known that college graduate starting salaries differ per student, even for students who
graduated in the same major. Which factors motivate this difference? We know the college
a student graduated from might affect the starting salaries, but does a high ranked school
actually mean a higher starting salary? And which other factors come into play? We intend
to find explanatory models for the starting salary of law school graduates by using Ordi-
nary Least Squares regression. We compare these models with another regression method:
the K-th nearest neighbor regression. Uncertainties about the results are thereafter studied
by means of a Monte Carlo simulation. We will use data from The Official Guide to U.S.
Law Schools, 1986, Law School Admission Services, and The Gourman Report: A Ranking
of Graduate and Professional Programs in American and International Universities, 1995,
Washington, D.C. Furthermore, this document is written with the help of LATEX.
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1 Introduction

Nowadays, every student wants to know what their starting salary will be. Since, most students
start looking for work after obtaining their degrees, one of the most challenging aspects is getting
an agreement on the starting salary. The starting salary may certainly depend on many different
factors such as the type of major pursued, overall intelligence and the quality of the schools the
student graduated from. We intend to investigate if such a relationship can be found in a data
set of law school graduates from the United States. We expect that graduating from a higher
ranked school is positively correlated with the starting salary. We suspect this due to the fact
that having graduated from a prestigious school, like Harvard, has an immense impact on a
student’s life in today’s society. But what is perhaps even more important is the value related
to the name, so the rank of the school. However, other variables may also notably affect the
starting salary. The following research report reflects our statistical, machine learning and data
science knowledge. The main goal of our analysis is to build an appropriate model for estimating
the starting salary from American law school graduates and the school they graduated from.
Our report is structured as followed: First we will disclose more information about our data, by
briefly explaining the main characteristics of the data. After that, we will reveal all the methods
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and techniques we use during our research and explain several key concepts. For example, the
Ordinary Least Squared regression and the K-Nearest Neighbour regression. We also carry out
a Monte Carlo simulation to check certain uncertainties found during our regression analysis.
Furthermore, we will show our results and discuss the considerations we have made. Last but
not least, in the last section we will summarize our findings and give our final conclusion.

2 Data

The source of our data is as follows: Law School Admission Services, “The Official Guide to
U.S. Law Schools,” LAWSCH85 datasheet, March 1, 1986 [Revised Jan. 2022]. Gourman, J.,
“The Gourman Report: A Ranking of Graduate and Professional Programs in American and
International Universities,” LAWSCH85 datasheet, March 1, 1995 [Revised Jan. 2022].

2.1 Characteristics of the data

During our research, we will make use of dataset LAWSCH85 (Law School Admission Services,
1986; Gourman, 1995). The dataset contains information regarding 156 law schools from The
United States. It contains the following variables:

variable Name explanation type of variable
rank law school ranking numerical variable
salary median starting salary numerical / dependent variable
cost law school cost numerical
LSAT median LSAT score numerical
GPA median college GPA numerical
libvol no. volumes in lib., 1000s numerical
faculty no. of faculty numerical
age age of law sch., years numerical
clsize size of entering class numerical
north =1 if law sch in north categorical / geographical
south =1 if law sch in south categorical /geographical
east =1 if law sch in east categorical / geographical
west =1 if law sch in west categorical / geographical
lsalary log(salary) numerical / log(dependent variable)
studfac student-faculty ratio numerical
top10 =1 if ranked in top 10 categorical
r11 25 =1 if ranked 11-25 categorical
r26 40 =1 if ranked 26-40 categorical
r41 60 =1 if ranked 41-60 categorical
llibvol log(libvol) numerical
lcost log(cost) numerical

There are a lot of missing values for different types of variables and even though the data is
produced in 1995, we assume it still holds true. As an indicator of the quality of law schools,
we use the rank of the school, which is also partly divided into the different categories top10,
r11 25, r26 40 and r41 60 as dummy variables. The rank of a law school is, among other things,
determined by the median LSAT score and median GPA of its students. It is for example difficult
to enter higher ranked schools with a low LSAT score. The LSAT (Law School Admission Test)
score ranges from 120 to 180, with 180 being the highest and the GPA ranges from 0 to 4.0
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with 4.0 being the highest. We use the LSAT and the GPA as indicators for the achievements of
students. The amount of books in the school library is used as a indicator for knowledge among
the students of a law school. Besides the basic salary, cost and libvol variables, the dataset also
contains the logarithmic functions of these variables, called lsalary, lcost and llibvol.

3 Methodology

In our investigation, we calculate and compare all tests and statistics w.r.t. a 5% significance
level.

3.1 Incomplete dataset

The first problem we come across are the missing values in the dataset we use to research our
hypothesis. Unfortunately, deleting the data with missing values would lead to non statistically
significant results, because of the small amount of input data. That is why we use different
approaches to fill in the missing values in our data.
For our first approach of filling in the missing data, we use mean imputation. For this method we
calculate the mean for the non-missing values and substitute this into the missing values. This
would prevent the problem of reducing our data size. Unfortunately, there are some disadvantages
to this method. Standard deviation and the variance of the variables, for which mean imputation
is used to fill in the missing values, are biased. If we fill in the mean for values which would have
been much more distant from the mean, it would result to an underestimated SD. Our second
approach, is median imputation. This implies substituting the calculated median over the non-
missing values, into the missing values. The disadvantages are nearly as big as using mean
imputation. In case of outliers, median imputation would be a better choice. Both approaches
ignore the relationship between variables, which decreases the correlation between them and so
using these two creates another bias (Salgado et al., 2016).
Our third approach, for filling in the missing values, is linear interpolation. The equation for the
linear interpolation function is (Chapra and Canale, 1998)

f(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0)

Linear interpolation determines missing values by taking the average of the two adjacent points.
If there is no earlier point, it copies the value that comes after. If there is no subsequent point,
it copies the earlier value. If there are no values concurrently, it uses the earliest neighboring
points. We believe that linear interpolation will protect the statistical performance of the data,
or at least not degrade it as proven in ”Comparison of Linear Interpolation Method and Mean
Method to Replace the Missing Values in Environmental Data Set” (Mohammed Noor et al.,
2014).
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3.2 Choosing between OLS and KNN (interpretability vs flexibility
(simplicity))

For the regression of the model there are two options: Ordinary Least Squares (OLS) or K-nearest
neighbor (KNN) regression. For both methods there are a mutual concessions and compromises:

3.2.1 KNN (dis)advantages

One of the main advantages of the KNN is that there a no assumptions about the shape of the
distribution of the population, from which the data is drawn, as it is a non-parametric algorithm
(Alo, 2019). So there a no parametric conditions which have to be fulfilled. Besides that, it is a
very simple algorithm, easy to understand and easy to interpret Mohammed Noor et al. (2014).
Besides its advantages, there are also some disadvantages. One of the problems which arise with
using KNN is its high memory requirement, as all of the training data must be present in memory
in order to calculate the closest K neighbors. It is also known as a slow algorithm, since we’re
computing the distances for all the K closest points in the testing phase. Its testing phase has
a worst case run time of O(n*k*d). Furthermore, the algorithm is very sensitive to irrelevant
variables and outliers in the data.

3.2.2 OLS (dis)advantages

The OLS regression model is a linear model, for which the Ordinary Least Squares method is
used to estimate the parameters of the model. The model reveals many statistics about the
model and information for all variables. Unlike KNN, it is also much faster.
However, the model has a lot of limitations. The data has to meet some requirements before the
OLS regression model can be used, like linearity. There has to be a linear relation between the
dependent and each independent variable in the model. No multicollinearity, high correlation
between two or more independent variables. Homoscedasticity, the error term of an independent
variable having a constant variance across different samples in the data. If the assumptions of
the linear model are violated, then the results of our hypothesis tests and confidence intervals
will be inaccurate. The errors having a normal distribution is an optional condition Furthermore,
OLS is sensitive to functional form, whenever the error term is not correctly specified. The OLS
regression model needs a large data set to achieve reliable results and is very sensitive to outliers.

3.3 OLS Regression

After completing our dataset, we start with a simple linear regression. We add different in-
dependent variables one by one to our model and compare all possible regression models, by
mostly looking at (adjusted) R-squared, the t-values and P-values per variable. The R-squared
for the explainability of our model. The t-test for significance of the coefficients and F test for
model significance. Besides comparing the descriptive statistics, we also check the conditions of
the OLS for every combination of independent variables. For example, adjusted R-squared, VIF
and condition number for detecting collinearity. Checking density histograms and also doing the
Jarque-Bera test for normality. To detect outliers, we look at the plots and compare all regular
variables and their log transformed plots. For linearity we plot the residuals vs the explana-
tory variables and also perform the Ramsey RESET test. For heteroskedasticity we check the
variables their regular plots, the model its residuals and we do the Breush-Pagan test. We will
explain these tests in more details.
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3.4 Checking for the assumptions

Assumptions:

1. Linearity (linear in parameters)

2. Random sampling

3. No multi-collinearity (or perfect collinearity)

4. Exogeneity/Endogeneity

5. Large outliers

6. Homoskedasticity

7. Error terms should be normally distributed.

With 1 or more of these assumption violated, the results of the regression can not be trusted.
To control these assumptions as much as possible, some cautions can be taken:

3.4.1 Linearity

Using a linear regression model to detect the relationship between variables, which have no lin-
ear relationship, leads to an underfitting model. That is why the linearity assumption is one of
the most important conditions, which have to be present. To check for linearity, we can apply
different methods.

Ramsey Reset Test
The Ramsey reset (RR) test checks whether we have a functional misspecification e.g whether
the linearity is too restrictive. We do this by adding a non-linear combinations of fitted values
and test whether we get more explainability of our dependent variable.

yi = β1x1i+ β2x2i+ ...+ βkxki+ γŷi
2 + ε (1)

H0 : γ = 0 HA = γ ̸= 0 (2)

In case the p-value is bigger than 0.05, we fail to reject the null hypothesis and fail to detect
any misspecifications (non-linearity). In case the p-value is smaller than 0.05, we reject the null
hypothesis and this indicates a non-linear relationship in our data. This means the linearity
assumption is violated.

3.4.2 Random sampling

The second assumption is random sampling. This assumption states that the sample used for
our regression model, so our data, must be drawn at random. So every sample must have
equal probability of being used. Of course, we can not test this, but using logical reasoning
we understand the data we used can not be selected randomly. Our data set contains the
175 highest ranked law school, which could lead to very different results, with respect to the
relationship between starting salary and the quality of the school, than a data set with randomly
chosen law schools. The 175 highest ranked schools are all very close to each other in space,
which is a source of non-independence. Also, one school its rank has to depend on the rank of
the other schools. So our sample does not consist of random, independent draws. This does not
lead to any problem, as the error term is uncorrelated with the explanatory variables (Woolridge,
2013).
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3.4.3 Multicollinearity

Whenever two variables that are highly correlated are both included in a regression model, one
of them will be insignificant, as they are both providing a lot of the same information. This
correlation is a problem because independent variables should be independent. If the degree of
correlation between variables is high enough, it can cause problems :

1. redundancy

2. the estimates of independent variables on the dependent variable will cause to be less
precise

3. the standard error of the independent variable, which causes the collinearity, will increase.
This can yield a Type II error, which means that we fail to reject the null hypothesis
because it is not significant, while it does turns out to be significant.

4. Overfitting: A good model consists of independent variables which all have an unique affect
on the dependent variable. When there is multicollinearity, the model is overfitted.

The Variance Inflation Factor
The Variance Inflation Factor (VIF) is how much the variance of your regression coefficient is
larger than it would have been if the variable had been completely uncorrelated with all the
other variables in the model. A value of 1 would mean completely uncorrelated. A rule of thumb
for (perfect) collinearity is that if the VIF is bigger than 10, it is too much. A large VIF in the
constant indicates that the regressors also have a large constant component. This would happen
when a variable has a large mean, but only a small variance. Finding perfect collinearity happens
commonly with the dummy variable trap, when one of the levels of a categorical variable is not
removed and thus the dummies sum to 1 and, therefore, replicate a constant. So including the
intercept in your VIF calculation is important. Standardized explanatory variables do not show
higher values.

Pearson correlation matrix
To see in what magnitude certain variables have linear relationships, a correlation matrix can be
used. It can give a clear view of which variables depend on each other. The sign shows which
way the relationship goes.

Condition number
The condition number measures the sensitivity of a function its results to its (data) input. When
two predictor variables are correlated, the coefficients of those regressors can differ greatly for
small changes in the data. A bigger value for the condition number would imply some form
of multicollinearity. A value below 1000 would be well conditioned. The smaller the condition
number, the better the model is conditioned in this perspective (Belsley, Kuh, and Welsch, 1980).

3.4.4 Conditional mean should be zero

Another assumption of the OLS is that the conditional distribution of the residuals, given the
independent variables, should have a mean of zero. Mathematically written as E(ui/Xi) = 0.
This assures that the other factors, which are included in the error term, are unrelated to the
independent variables. This assumption implies Cov(Xi, ui) = 0 (not the other way around). If
the assumption holds true, Xi is called exogeneous. Otherwise Xi will be endogenous. If the
conditional mean is too far from zero, it means that something you did not account for has an
effect you did not predict.
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Best Linear Unbiased Estimators
If all of the above mentioned assumptions are true, we will have Linear Unbiased (and consis-
tent) Estimators for the parameters (E(σ̂2) = σ2). To find the Best Linear Unbiased Estimators

(BLUE) β̂i for βi, with i being the amount of explanatory variables, we have to find the es-
timators with the lowest variance. This will hold true for one more assumption being correct
(homoscedasticity), according to Gauss Markov Theorem’s (Woolridge, 2013).

3.4.5 Homoscedasticity

When the variance of the conditional distribution of the error term given Xi is not constant,
heteroskedasticity occurs. Heteroscedasticity reduces the precision of the estimates in the OLS
regression. The reasoning for this is simple: the standard errors will be biased. Hence, the model
is not well defined. Adding more variables can help explain the performance of the dependent
variable.

Figure 1: Homoscedasticity vs Heteroskedasticity

Check residual plots
To see whether a pattern persists for a certain variable, we can check the residuals plot of that
variable, as seen in figure 1.

Breush-Pagan test
The Breush Pagan (BP) Test tests whether the variance of error term depends on a certain
variable Z1

H0 : Homoscedasticity HA = Heteroskedasticity (3)

Whenever the p-value is bigger than 0.05, we can not reject the Null Hypothesis, which means
var(u/x1, .., uk) = σ2., with xi being the explanatory variables. In case the p-value is smaller
than 0.05, we reject the Null Hypothesis. Then there is heteroscedasticity.

Classical Linear Model (CLM) assumptions
The classical linear model assumptions contains all of the Gauss Markov assumptions (one to
five) and one plus assumption: normality. According to Woolridge (2013), the OLS estimators

β̂0, β̂1, ...., β̂k will have a stronger effieciency property under the CLM assumptions than under
the Gauss-Markov assumptions.

3.4.6 Normality

The last assumption we check is if the error is normally distributed with mean zero and variance
σ2. If normality is present, assumption 4 (exogeneity) and assumption 5 (Homoscedasticity) will
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be automatically true:

E(u|x1, ..., xk) = E(u) = 0andV ar(u|x1, ..., xk) = V ar(u) = σ2 (4)

Jarque-Bera test
The Jarque-Bera (JB) test considers asymmetry and kurtosis, in which the null hypothesis con-
siders a normal distribution of the residuals. A JB value of 0 and a probability of 1 would
indicate that the model, including its error term, is normally distributed.

H0 : Normally distributed HA = non− normal (5)

A p-value bigger than 0.05 indicates the null hypothesis can not be rejected, while a p-value
smaller than 0.05 means the opposite.

Density histograms
A density histogram shows how frequent the variable its data is distributed over the whole
column. Whenever this is compared with how a normally distributed variable behaves, we can
see whether the variable throws off the normality of a model.

3.4.7 Large Outliers

Large outliers lead to incorrect OLS regression results, as OLS is very sensitive to these outliers.
That is because the OLS results weigh each pair X,Y, so large outliers can affect the slope of the
regression line greatly. There are different ways to deal with outliers. For example by scaling
the data.

3.4.8 Significance

Testing significance is not an assumption, but still very important for selecting our model.

R2 (adjusted)
R2 is a statistical measure of how well the regression line approximates the data points: what
fraction of the variance of the dependent variable is explained by the independent variables. The
problem with R2 is that it does not take into account the number of regressors. In theory, the
model is always explained equally as good, or better, by adding more regressors. However, the
estimate becomes less accurate, if the additional regressors have little influence on the dependent
variable. This is why we also look at the R2 adjusted. Adding regressors does not necessarily
lead to higher R2 adjusted. Only when the variance falls, so the addition of a regressor is actually
useful, only then will the adjusted R2 rise. Then the added regressor adds value to the model
and creates a better fit (Stock and M.W., 2015).

T-test
The t-test checks whether the variable is significant to a model. Doing this for all variables in
your model individually, can show if your regression is correctly explained. This test can be done
by performing a hypothesis test for a given variable.

H0 : 0 vs HA ̸= 0 (6)

To derive the t-test we first need to calculate the t-statistic. For a 95% double sided test:
0.05/2 for the number of residuals this model has n number of observations-number of variables,
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including dependent regressor. Then the formula for the t-test is:

t =
x− µ0

σ/
√
n

(7)

If the found value is smaller than the t-statistic, H0 holds, otherwise the alternative is favourable:
so the variable ought to be significant for this model. If the value is negative it means the effect
on the model is in the opposite direction (Casella and Berger, 2002).

F test
The F value and Prob(F) statistics test the overall significance of the regression model. Specifi-
cally, they test the null hypothesis that all of the regression coefficients are equal to zero versus
at least one coefficient is non zero:

H0 : β1 = β2 = . . . = βp = 0 vs HA : at least one βj is nonzero (8)

This tests the full model against a model with no variables and with the estimate of the dependent
variable being the mean of the values of the dependent variable. The F value is the ratio of the
mean regression sum of squares divided by the mean error sum of squares MSR

MSE . Its value will
range from zero to an arbitrarily large number.
The value of Prob(F) is the probability that the null hypothesis for the full model is true (i.e.,
that all of the regression coefficients are zero). For example, if Prob(F) has a value of 0.01000
then the chance that all of the regression parameters are zero is 1 in 100. Such a low value
would imply that at least some of the regression parameters are nonzero and that the regression
equation does have some validity in fitting the data (i.e., the independent variables are not purely
random with respect to the dependent variable) (Stock and M.W., 2015).

3.5 K-th Nearest Neighbor Algorithm

To check whether our OLS results can be improved, we use K-th nearest neighbor (KNN) re-
gression. For KNN to work for our data set, we have to split the data set into two sets. The
training and test set. The training set uses our model with the estimates. The test set uses
our x-value predictions. The y values are the same as in training set. This is done such that
we can find: ŷ - y = prediction - true value. If the training set is too small, our estimates may
be unreliable. because, when there are too little points to conclude your regression from, your
predictions will be biased. If the training set is too large, our predictions will be imprecise since
our test set is too small. A small test set renders it unable to accurately check your results from
the training set. To achieve optimal results for our model, we will use a balance of 70 and 30%
for the training and test set, respectively.

The first step is to calculate the distance between the new point and each training point. There
are various methods for calculating this distance, of which the most commonly known methods
are Euclidean, Manhattan (for continuous) and Hamming distance (for categorical).

Euclidean Distance: Euclidean distance is calculated as the square root of the sum of the
squared differences between a new point (x) and an existing point (y).

Euclidean Distance = |X − Y | =

√√√√ k∑
i=1

(xi − yi)
2

(9)
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Figure 2: Euclidean vs Manhattan distance

Manhattan Distance: This is the distance between real vectors using the sum of their absolute
difference.

k∑
i=1

|xi − yi| (10)

Hamming Distance: is used for categorical variables. If the value (x) and the value (y) are the
same, the distance D will be equal to 0. Otherwise D will be equal to 1.

DH =

k∑
i=1

|xi − yi|

x = y ⇒ D = 0

x ̸= y ⇒ D = 1

(11)

Once the distance of a new observation from the points in our training set has been measured.
The next step is to select the k value. This determines the number of neighbors we look at when
we assign a value to any new observation. Based on the k value, the final result tends to change.
We intend to find the optimal value if k by calculating the error for our train and test set. As
minimal error term for any prediction model, is the goal. For a very low value of k, say 1, the
model overfits on the training data, which leads to a high error rate on the validation set. On
the other hand, for a high value of k, the model performs poorly on both the train and test set.
The test error curve reaches a minimum at some value of k. This value of k is the optimum value
of the model.

3.6 Fixing violated assumptions

Some violations can be fixed. The following are relevant to our investigation.

3.6.1 Multicollinearity

How to deal with multicollinearity:
Linearly combine the independent variables, such as standardizing two similar variables and add
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them together.

3.6.2 Heteroscedasticity

To fix heteroscedasticity:
As we do not know the specification of the heteroskedasticity, we can not use weighted least
squares. Hence we use heteroscedasticity-consistent standard errors to minimize the impact of
inaccurately specified residuals. Heteroskedasticity-robust requires large n for consistency. In
addition, there have to be few assumptions valid such as exogeneity, random sampling and no
large outliers.

Var(β̂) =

∑k
i=1

[
(xi − x̄)

2
σ2
i

]
(∑k

i=1 (xi − x̄)
2
)2

where Var (ui | xi) = σ2
i

(12)

Another way would be to transform the dependent variable. One common transformation is to
simply take the logarithmic function of the dependent variable.

3.7 Monte Carlo simulation

To check on some uncertain events regarding your regression results, a technique called Monte
Carlo simulation can be used. It predicts a couple of outcomes based on a set of fixed input
values. So it builds a model of potential outcomes by taking a probability distribution for any
variable that is fundamentally uncertain. This process can be repeated thousands of times within
the same random set of values to get a large number of likely outcomes. Finally, it shows a range
of possible outcomes with the frequency of each result presented.
In our case we are mostly interested in what happens when there is a normally distributed model
with non-normally distributed residuals (ϵ). Different distributions can be used for the residuals.
Using distributions that are similar to your results and defining your simple model on basis of
your regression results can be advantageous. So using constant values for values which are in
practice hard to determine, like B1, makes this simulation useful. As the same model runs over
and over again, while maintaining the values you are not interested in, the behaviour of the value
you are interested can be deciphered. The simple linear model looks like:

Y = B0 +B1 ∗X + ϵ (13)

4 Results

4.1 Descriptive statistics

After seeing the data set, we perceive plenty of missing values. Most of the variables have around
8 missing values, except age which has 45. If we delete all the rows of missing values, we will
lose 42.3 percentage of our observations and that will make our investigation unreliable, as we
already have little data to work with.
Furthermore we notice from (9) that not all the ranks in the range of 1-175 are included, so we are
still missing in total 21 ranks. Besides the missing ranks, we have two duplicate ranks (16 and 17)
in the r11 25, but they do have different values for the other variables, so schools can share a rank.

Now we will briefly analyze our dependent variable. The histogram 9a of salary shows us that
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there are 3 mods i.e it’s a multi-modal distribution, which can identify categorical variable of
“rank” as high rank , medium rank and low rank. Further, salary is right skewed, which indicates
that the right tail is heavier than the left tail. This is due to outliers on the right tail (school
ranks with very high starting salaries), this is visible in the boxplot 9a. We make use of the
log transformation of salary, because salary tends to be highly skewed. This ensures that there
are fewer outliers and data is more normally distributed, 9b. We can also claim this based on
the standard deviation. After transforming to log, it has become more precise. Besides, it also
ensures that the correlation has increased between rank and salary. If we take the log transform
then the correlation goes from -0.85 to -0.90 7, so more magnitude to the relationship. That’s
why we mainly use ”lsalary” for our response variable.
Furthermore, (7) lsalary is perfectly negatively correlated with rank (higher lsalary leads to a
higher rank), with the variables GPA, LSAT and libvol it’s strongly positive correlated and with
cost, age it is averagely positively correlated.

Finally, we will describe the variables that most relevant do this investigation. First of all,
the variables LSAT, GPA, cost, grade and age approximately follow a symmetric distribution(8),
The variable llibvol is moderately skewed. Other variables are highly skewed.
Furthermore, all the positive values(8) of excess kurtosis indicate that there are extreme values
as outliers and the negative value indicates that there are few outliers.
Besides the transformation of salary, there are also two other variables for which we can consider
taking the log transformed form. It seems wise to take log transformation for libvol and cost,
since they are both highly skewed(8). You can also notice from the box plot that taking log re-
duces outliers12a,10a, . Furthermore, LSAT and GPA also have few outliers11a, 10b, but these
variables contain a minimum and maximum of their own statistics (refer). To measure central
tendency of a variable the median will be more accurate, since the mean of all the variables
will be affected by these outliers; the median is more robust to outliers. Furthermore about the
correlation 7, rank is negatively correlated with all the variables. For GPA, LSAT and salary
even strongly. For cost, libvol and faculty they are averagely positively correlated. And last but
not least, LSAT and GPA could be collinear, as they are strongly positively correlated. This can
cause violation of an assumption.

4.2 Missing data interpolation

To choose between either deletion, mean, median or the linear interpolation method we compare
the OLS regression results for salary with as only regressor the rank. We are mostly interested in
the explainability and significance. Before interpolation the data is sorted by rank, this is because
otherwise the linear interpolation method will not derive with the correct adjacent points. The
best method is linear interpolation as it has the highest R2 and the least amount of outliers.
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Figure 3: Linear interpolation results.

The other methods their results can be found in appendix B.

4.3 OLS results

To start a regression you need to understand your data set and know what is being investigated.
In our investigation we aim to predict the salary of law graduates from 156 ranked schools. All
the results in this report have been computed while using the standard errors which assume that
the covariance matrix of the errors is correctly specified. This way, heteroscedasticity can be
found accurately. As mentioned earlier, we use the log transformation of salary as it produces
fewer outliers. First we try to find our model without using any categorical variables.
Whenever we use rank as our main regressor, we can see great explainability but also a non-linear
pattern in the regression and a non-normal pattern in the residuals. Trying to use transforma-
tions, like taking the log or squaring the whole column, does not help with the regression results
(this can be found in appendix C).
However, using cost instead of rank does not come with these assumption violations. Hence, we
can also use cost as our main regressor as it has better assumptions indications than rank. This
difference in indications can be seen in appendix C.
To gain more explainability on the model while retaining the significance of coefficients, we start
adding other variables. A very important assumption to keep in mind while adding variables to
a model, is that of no multicollinearity, because violating this assumption becomes more likely
as you add variables. So whenever a new variable is added, it is of essence to check whether
some values and tests are in order. For the sake of simplicity, we will unearth some findings in
advance. The variables faculty, studfac, west, south, north, east all have very poor significance
to explain lsalary in any combination, and thus will not be used in the remainder of this report.
We find that the variable LSAT is significant, but GPA is not. They are also jointly significant.
As a t-test smaller than the t-statistic for 5% significance (=1.95) indicates that a variable is
insignificant. The F-test value has to bigger than the F-statistic (2.37 for this significance level),
to be significant. Moreover, the low probability indicates the probability that the null hypothesis
is true, which assumes that all regression coefficients are zero. The coefficients we used are for a
model that includes both LSAT and GPA (appendix D).
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variable t-test F-test

LSAT 3.00 NA

GPA 1.75 NA

LSAT + GPA NA 180 (Pr=0)

Table 1: Overview for t-test and F test for LSAT and GPA. NA indicating not applicable.

This brings us to including both of them into our model. Now we realise that GPA and LSAT
are both measures of intelligence, and hence must be correlating in some way. Their correlation
is 0.77, as can be seen in the correlation matrix (appendix A). Thus, choosing only LSAT might
seem like a good solution. Even so, if you only include LSAT you will lose considerable ex-
plainability. If you standardize both LSAT and GPA and bring them together in a new column
called grade, you fix this collinearity while simultaneously keeping that combined significance
and explainability. This can be seen in the tables in appendix D.

In the following table the normality of each relevant variable can be seen.

variable grade LSAT GPA age clsize llibvol libvol rank lcost

JB value 2.57 9.85 1.59 0.73 70.25 25.13 2519 9.02 33.97

P value 0.28 0.007 0.45 0.69 0 0 0 0.01 0

Table 2: Individual Jarque-Bera overview for all relevant variables.

The combination of the JB value and P value shows whether given variable is normally dis-
tributed. The lower the JB value, the better the normality and if the p-value is bigger than 0.05
this holds. Since grade is our most relevant variable, we will show that this is also visible in its
density histogram. The less relevant variables their density histograms can be found in appendix
E.

Figure 4: Red = curve of grade. Black = normal distribution.

After checking for all non-categorical variables and comparing the results and test for many

combinations, the model ̂lsalary = rank+ libvol+ grade has the best explainability. The model
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̂lsalary = lcost + libvol + grade, breaches least assumptions. Unfortunately, linearity and ho-
moscedasticity still are far from optimal. We refer to the models with rank and lcost as model
2 and 3, respectively, for future comparisons.
Now all that remains is to check whether the categorical ranks are of any significance to predict
salary. We can directly see that the original set of categorical ranks (rank 1-60) has great indica-
tions for the assumptions. The explainability is also great. This makes us wonder if differently
defined categorical ranks yield even better results. We do this for the ranks 1-120 (double origi-
nal), 100-176 (last 60), 50-115 (middle 60) and for all ranks 1-176 (156 observations). The double
has good significance but all assumptions violated. The last ranks has poor explainability, and
all assumptions, except for normality, violated. The middle ranks only has homoscedasticity.
When looking at all ranks categorically, only collinearity seems to be satisfied. So defining the
ranks in a different categorical order makes the regression useless. An overview of the results of
all differently defined categorical ranks can be seen in appendix F.
Continuing our search for the best model, we only look at other variables to add to the original
set of categorical ranks, so ranks 1-60. The variable grade has better results than GPA and
LSAT individually or even combined. Including grade appears to be essential as it fixes linearity
and adds considerable explainability. We find that the variables age and clsize best go together.
However, the variable age had a lot of missing values in our original data set, consequently, our
interpolation for that variable ought to be faulty. Therefore, we would rather not include it in
our final model. Only using clsize has too poor of a significance. Now the only variable that
remains is llibvol, as libvol has way worse results. Including llibvol to our model adds little ex-
plainability. It also does not satisfy the Breush-Pagan test for 1% significance, where the model
with only grade added does. Additionally, the model with only grade has the best normality
and collinearity conditions, even going as far as making the residuals appear to be normally
distributed. Also, comparing the condition number between the two models implies that small
changes in the data produce way smaller changes in the solution for the model with only grade.
Hence, the best model consists of the original categorical ranks and grade. We refer to this model
as model 1. A table considering all original categorical ranks models, can be found in appendix
G.
To compare between the models 1, 2 and 3 the following tables are given. The models their
individual variables can be found in appendix H.

Model R-squared R-squared adj. Skew Kurtosis

1 0.879 0.875 0.01 2.98

2 0.852 0.849 0.24 2.91

3 0.712 0.706 0 2.84

Table 3: Regression results for each model.

Model JB Cond. No RR.2 RR.3 RR.4 BP

1 0.01 (Pr=1) 7 0.91 0.95 0.26 0.026

2 1.54 (Pr=0.46) 1720 0 0 0 0.001

3 0.17 (Pr=0.92) 1070 0.82 0 0 0

Table 4: Assumption tests and indications for each model.
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We see that model 1 has the best explainability and the best assumption indications. All the
Ramsey RESET test their results indicate that the model is linear. The skewness, kurtosis and
JB values all indicate near perfect normality. The only assumption that is not within bounds,
is that of homoscedasticity. However model 1 only considers the first 60 ranks and our data
consists of 156 observations. This is why we are also interested in models 2 and 3, which do
cover the whole data set. Amongst them can been deduced that the model with ranks has more
explainability, however it does not satisfy a lot of OLS assumptions. The model with lcost has
better assumption indications but still lacks some linearity and homoscedasticity.
To investigate further on our best model, model 1, we look into its residuals.

Figure 5: Regression plots for grade, for model 1.

In the Residuals versus grade plot, the following can be seen:

• The residuals are randomly scattered around the horizontal axis. Linearity seems to be
correctly specified.

• The residuals are closely scattered around the horizontal axis, without any very noticeable
ones. Suggesting that there are no outliers.

• The residuals form a little bit of a cluster around the middle. They also do not form a
clear ring around the horizontal axis. Hence, the variances of the error terms are not equal
everywhere. This implies a mild form of heteroscedasticity.

From the Y and Fitted vs. X plot can be perceived that:

• There is a positive linear relationship between lsalary and grade.

• The predicted values come close to the actual values of lsalary, this result is backed up by
our high R-squared in table 3.

As it is clear that model 1 has some sort of heteroscedasticty, the use of hetero robust errors
is necessary for predictions. This results in the following coefficients and (standard deviations):

̂log(salary) = 10.382 (0.011) + 0.066 grade(0.012) + 0.598 top10(0.040) + 0.509 r11 25(0.034) +
0.318 r26 40(0.044) + 0.204 r41 60(0.021) for a total explainability of 87.9% of the data.

4.4 KNN results

As we mention in the methodology for KNN, no assumptions about the form of f(X) are to be
made when applying the KNN regression algorithm. Our aim using the K-Nearest Neighbor
regression is to compare the results when applying parametric and non parametric framework to
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our choices of variables. We carry out this comparison by measuring the Mean Squared Error of
our predictions with respect to the true values in both OLS and KNN. In the latest, the computed
MSE varies highly with different choices of k. For this reason we display the different MSE for
all the values of k up to 25 together with the yielded by the OLS regression. The optimal split
between train and test data is for 70/30 in this case, yielding on average a lower MSE than when
using other splits like 50/50, 60/40 or 80/20 in our three models

Model 1: lsalary ∼ top10 + r11 25 + r26 40 + r41 60 + grade

Figure 6: Comparison of OLS and KNN performance in Model 1

We find the MSE in model 1 to be 8.953 when using the Ordinary Least Squares regression.
Looking at the graph we can see how the K-Nearest Neighbor approach outperforms the OLS
when applied with 6, 10, 14, 17, 18 and 20 neighbors. Getting the best MSE of 5.397 when using
k=20.

Model 2: lsalary ∼ rank + libvol + grade

Figure 7: Comparison of OLS and KNN performance in Model 2
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In our second model we can observe the same behaviour for the non-parametric approach, out-
performing the OLS regression only for some of the values of k. While the parametric approach
yields an MSE of 8.429, the KNN gives better predictions when applied with the values of k of 9,
13, 15, 18, 20, 23 and 24. The best performance k for this model is k=15 with an MSE of 7.260

Model 3: lsalary ∼ lcost+ libvol + grade

Figure 8: Comparison of OLS and KNN performance in Model 3

The last model that we consider has an MSE of 9.109 in the OLS regression. Slightly higher
than in our previous models, KNN still gets better results in terms of the MSE when k equals 6,
10, 15, 19, 22 and 23. The best KNN model is the one that yields MSE of 6.911 using k=23

4.5 Monte Carlo Simulation

We want to see what happens when there is a normally distributed model with non-normal
residuals. We use the following four distributions to imitate this process:

• normal:

f(x) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2)

• chi-square: its independent random variables, which all have a standard normal distribu-
tion, are squared and summed. Chi square is positively skewed, it becomes more positively
skewed as the degree of freedom increases.

• Laplace: is expressed in terms of absolute difference from the mean, whereas the normal
distribution is expressed in terms of the squared difference from the mean. Therefore, the
Laplace distribution tends to have fatter tails. It looks like the normal distribution with a
very steep summit.

• lognormal: natural logarithm of the normal distribution. We are particularly interested in
this distribution as we have used a couple of log transformed variables in our regression
models.
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We use these distributions, which are reminiscent to the normal distribution, because our con-
sidered models seem to have very good normality indications. So, using remote distributions
will not be meaningful to our investigation. For our investigation we use the simple linear model
that has the same values as our simple salary for rank regression. Here in the B0 = 55000 and
B1 = −200. We researched the the difference in resulting estimated B1, while performing each
different distribution ten thousand times. We are interested what happens whenever the sample
size is small, considerable or big.

ϵ distr. n=10 n=20 n=50 n=100 n=150

normal -207.93, 0.00 -218.88, 0.01 -207.095, 0.46 -199.91, 0.97 -202.03, 0.90

chi-square -238.92, 0.0 -206.05, 0.30 -197.458, 0.31 -207.55, 0.59 -203.73, 0.40

Laplace -211.07, 0.0 -223.27, 0.35 -211.414, 0.43 -205.25, 0.12 -208.29, 0.37

lognormal -207.93, 0.0 -218.88, 0.01 -207.095, 0.46 -199.91, 0.97 -202.03, 0.9

Table 5: B̂1 for a normally distributed random simple regression, where the residuals’ its distri-
bution is either: normal, chi-square, Laplace or lognormal. the amount of observations is denoted
by a letter n. The value to the right of -xxx, is the JB p-value.

These results indicate that as the amount of observations increase, B̂1 grows closer to the true
value of B1. This is backed up when you interpret the JB p-values, normality becomes better
as the amount of observations increase. As a p-value bigger than 0.05 indicates normality.
So it does not really matter if your normally distributed model has non-normally distributed
residuals, that is, if your data set is big enough. Whenever you only have a small amount of
observations, differently distributed residuals can have big influences on your regression. This
varies per different distribution, as distributions closer to the normal distribution have better
B̂1 values compared to distributions that are less reminiscent. So lognormal its values for B̂1

become more accurate, while needing less observations as oppossed to Laplace which has a less
reminiscent form of the normal distribution. For the chi-square distribution there seems to be
a threshold of normality as it becomes more positively skewed as the amount of observations
increase.

5 Final Word

5.1 Conclusion

We start by filling in our incomplete data set by means of interpolation, as deleting all miss-
ing values would results into very biased modeling. Now we can actually begin the regression
process and find explanatory models for the salary of law graduates in America, around 1985.
We find that the log transformed form of salary, lsalary, has substantially fewer outliers and will
thus yield better results. If we use rank as our main regressor we get great explainability, but
poor assumption indications. Yet, whenever we use lcost as our main regressor these assumption
indications become way more favourable, however it lacks some explainability. To add more
explainability to the model, we include more variables. We find that the variable LSAT is indi-
vidually significant, but GPA is not. They are also jointly significant. Adding them both results
into collinearity, as both variables are indicators of intelligence. Standardizing both variables
and bringing them together into a new variable called grade, resolves this collinearity while si-

multaneously maintaining that high explainability. The model ̂log( salary ) = 10.74+ -.004 rank
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+.0002 llibvol+ .059 grade has the best explainability. The model ̂log( salary ) = 9.364+ -.108
lcost +.0004 llibvol+ .166 grade, breaches least assumptions. Unfortunately, linearity and ho-
moscedasticity are still far from optimal. Now we start looking at categorical variables. We find
that the original categorical ranks, 1 until 60, has great explainability and decent assumption
indications. Defining the categorical ranks differently results into unacceptable regressions with
awful assumption indications. The variable grade is the only one that adds good explainability, to
the original categorical ranks, while improving the assumption indications. The only assumption
that is not satisfied for this last model, is homoskedasticity. So, this model needs heteroscedastic

robust errors to accurately predict. In conclusion, we proclaim that ̂log( salary ) = 10.382+ -.597
top10 +.509 r11 25+.318 r26 40 +.204 r41 60+ .066 grade is the best estimator to predict the
salary of graduates from ranked schools in the United States, around 1985. Taking into account
mean and variance to compare the different approaches to our regressions, the Mean Squared
Error comes as a perfect tool to compare so. As we appreciate when computing the MSE for
the parametric and non-parametric regression, the K-nearest neighbor predictions yields better
predictions. We come to the conclusion that for this investigation, KNN will represent a more
preferable approach to explaining the starting salaries of law school graduates. In our Monte
Carlo simulation we compare a normally distributed simple linear model that has normally dis-
tributed residuals with the same model that has non-normally distributed residuals. We choose
the chi-square, lognormal and Laplace distribution as non-normal distributions for the residu-
als. We use these distributions as the considered models in our regressions have great normality
indications. So, using remote distributions will not be meaningful to our investigation. Our
results indicate that as the number of observations increase, the B̂1 grows closer to the true
value of B1. So it does not really matter if your normally distributed model has non-normally
distributed residuals, that is, if your data set is big enough. Whenever you have a small amount
of observations, differently distributed residuals can have big influences on your regression. We
also find that more similar distributions to the normal distribution, tend to have more accurate
B̂1 values.

5.2 Discussion

We can not check whether the data has been drawn randomly from the population. Thus, we
are not able to clarify one of the assumptions for OLS.
We are uncertain about the origin of the rank for schools. Perhaps this measure is highly corre-
lated with some of the other variables. Or maybe rank has been incorrectly formed otherwise. We
are specifically concerned about the variable rank, as our regressions are mainly formed around
it. Also, our data has been interpolated by ordering the whole data set for rank. If there are
any mistakes in the original form of rank, this can greatly alter our final results.
We have come up with some additional variables that might result in an increase in explainabil-
ity for the starting salaries. Gender or racial differences are not considered, which have been
proven, at least around the 90s (from when this data is from), to have influence on the starting
salary. Also, Unemployment rate of the recent graduates for a given school could happen to be
significant to our model, given that the unemployment measures the demand for workers from a
specific school and this directly has an influence in how much is paid to an employee.
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salary cost LSAT GPA Libvol faculty age clsize lsalary llibvol lcost grade

mean 38688 12670 158 3.30 348 70 84 242 10.52 5.76 9.39 -0.00
std 12054 3999 4.69 0.20 188 39 40 112 0.28 0.42 0.37 0.94
min 24900 2623 140 2.73 124 17 3 70 10.12 4.82 7.87 -2.85
25% 29837 9635 155 3.20 235 45 62 164 10.30 5.46 9.17 -0.60
50% 34700 12835 158 3.30 303 58 83 225 10.45 5.71 9.46 -0.12
75% 41187 15979 161 3.40 400 86 112 284 10.63 5.99 9.68 0.59
max 78325 20518 171 3.82 1745 245 206 679 11.27 7.46 9.93 2.68

Table 6: descriptive statistics

Appendix A: descriptive statistics

ranks salary cost LSAT GPA Libvol age clsize lsalary top10 r11 25 r26 40 r41 60 llibvol lcost grade

ranks 1
salary -0.85 1
cost -0.46 0.48 1
LSAT -0.72 0.74 0.47 1
GPA -0.71 0.74 0.25 0.77 1
Libvol -0.61 0.69 0.34 0.57 0.57 1
age -0.56 0.49 0.24 0.41 0.43 0.37 1
clsize -0.25 0.29 0.38 0.11 0.01 0.45 0.02 1
lsalary -0.90 0.99 0.48 0.75 0.74 0.68 0.51 0.28 1
top10 -0.41 0.62 0.38 0.51 0.53 0.49 0.30 0.03 0.56 1
r11 25 -0.45 0.54 0.14 0.34 0.35 0.40 0.30 0.27 0.54 -0.09 1
r26 40 -0.31 0.19 0.13 0.13 0.15 0.07 0.04 0.02 0.23 -0.08 -0.10 1
r41 60 -0.24 0.04 0.12 0.09 0.03 0.01 0.07 0.05 0.10 -0.09 -0.12 -0.11 1
llibvol -0.69 0.72 0.38 0.61 0.58 0.93 0.36 0.47 0.72 0.44 0.43 0.12 0.08 1
lcost -0.44 0.42 0.97 0.44 0.19 0.30 0.21 0.36 0.42 0.30 0.14 0.14 0.11 0.34 1
grade -0.76 0.79 0.38 0.94 0.94 0.60 0.45 0.07 0.79 0.56 0.37 0.15 0.07 0.63 0.33 1

Table 7: correlation matrix
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Skewness kurtosis(excess)

salary 1.34 0.78
cost -0.20 -0.77
LSAT -0.19 1.25
GPA 0.24 0.20
Libvol 3.36 19.18
faculty 1.79 1.79
age 0.15 0.21
clsize 1.32 2.11
lsalary 0.95 -0.13
studfac 1.14 3.06
llibvol 0.79 1.27
lcost -1.03 1.11
grade 0.29 0.30

Table 8: skewness and kurtosis

observations duplicates missing ranks

top10 10 0 0
r11-25 16 2 1
r26-40 13 0 2
r41-60 18 0 2
r61-175 99 0 16

Table 9: categorical rank

(a) Histogram and boxplot of salary (b) Histogram and boxplot of lsalary

Figure 9: A figure with two subfigures
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(a) boxplot of log(salary, llibvol,lcost) (b) boxplot of LSAT

Figure 10: A figure with two subfigures

(a) boxplot of GPA (b) boxplot of faculty and clsize

Figure 11: A figure with two subfigures

(a) boxplot of Libvol

Figure 12: A figure with two subfigures
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Appendix B: interpolation methods

Figure 13: interpolation results: deleted.

Figure 14: interpolation results: mean.
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Figure 15: interpolation results: median.

Appendix C: rank and cost

Figure 16: OLS results for lsalary - ranksquared.
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Figure 17: OLS results for lsalary - ranklog.

Appendix D: LSAT, GPA and grade

Variable Coefficient Std error T-value P-value Confidence interval VIF

intercept 8.566 0.026 22.93 0 [7.827 , 9.304] 2289

top10 0.599 0.045 13.21 0 [0.509 , 0.688] 2.0

r11 25 0.510 0.033 15.66 0 [0.445 , 0.574] 1.6

r26 40 0.319 0.031 10.25 0 [0.258 , 0.381] 1.2

r41 60 0.203 0.026 7.71 0 [0.151 , 0.255] 1.2

LSAT 0.009 0.003 2.86 0.002 [0.003 , 0.015] 2.8

GPA 0.119 0.068 3.22 0.082 [-0.015 , 0.254] 3.0

Table 10: LSAT + GPA its variables.

Model R-squared R-squared adj. Skew Kurtosis

grade 0.879 0.875 0.01 2.98

LSAT 0.877 0.873 0 2.96

GPA 0.871 0.867 -0.06 3.10

LSAT + GPA 0.879 0.874 0.01 2.97

Table 11: Regression results for LSAT, GPA and grade models.
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Model JB Cond. No RR.2 RR.3 RR.4 BP

grade 0.01 (Pr=1) 7 0.91 0.95 0.26 0.026

LSAT 0.01 (Pr=0.99) 7600 0.78 0.96 0.23 0.013

GPA 0.17 (Pr=0.92) 87 0.82 0.80 0.29 0.019

LSAT + GPA 0.01 (Pr=0.99) 7610 0.99 0.99 0.22 0.043

Table 12: Assumption tests and indications for LSAT, GPA and grade models.

Appendix E: normality histograms less relevant variables

Figure 18: Red = curve of age. Black =
normal distribution.

Figure 19: Red = curve of lcost. Black =
normal distribution.

Figure 20: Red = curve of llibvol. Black =
normal distribution.

Figure 21: Red = curve of libvol. Black =
normal distribution.

28



Figure 22: Red = curve of clsize. Black =
normal distribution.

Figure 23: Red = curve of GPA. Black =
normal distribution.

Figure 24: Red = curve of LSAT. Black =
normal distribution.

Appendix F: models for differently defined categorical ranks

Model R-squared R-squared adj. Skew Kurtosis

original 0.892 0.887 -0.11 3.22

double 0.889 0.884 -0.02 4.10

last 0.751 0.739 0.12 2.93

middle 0.750 0.738 0.14 3.09

all 0.854 0.851 -0.37 4.17

Table 13: Regression results for each differently defined categorical ranks model.
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Model JB Cond. No RR.2 RR.3 RR.4 BP

original 0.64 2000 0.97 0.70 0.32 0.009

double 7.9 (Pr=0) 2140 0 0.01 0 0

last 0.37 1790 0 0 0 0.045

middle 0.58 1190 0 0 0 0.714

all 12.45 (Pr=0) 6 0 0 0 0

Table 14: Assumption tests and indications for each differently defined categorical ranks model.

Appendix G: variable considerations for original categorical
ranks

Model with grade R-squared R-squared adj. Skew Kurtosis

without grade 0.858 0.854 -0.08 2.94

model 1 0.879 0.875 0.01 2.98

+ age + clsize 0.892 0.887 -0.11 3.22

+ llibvol 0.884 0.879 -0.06 3.12

Table 15: Regression results for each model.

Model JB Cond. No RR.2 RR.3 RR.4 BP

without grade 0.21 (Pr=0.90) 5 0 0 0 0

model 1 0.01 (Pr=1) 7 0.91 0.95 0.26 0.026

+ age + clsize 0.64 2000 0.97 0.70 0.32 0.009

+ llibvol 0.17 118 0.41 0.72 0.42 0.006

Table 16: Assumption tests and indications for each model.
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Variable Coefficient Std error T-value P-value Confidence interval VIF

intercept 10.28 0.026 389 0 [10.231 , 10.335] 12.1

top10 0.552 0.039 14.17 0 [0.476 , 0.628] 2.1

r11 25 0.451 0.037 12.25 0 [0.379 , 0.525] 1.9

r26 40 0.300 0.045 6.69 0 [0.212 , 0.388] 1.2

r41 60 0.183 0.020 9.17 0 [0.144 , 0.222] 1.2

age 0.0006 0 2.86 0.004 [0 , 0.001] 1.3

clsize 0.0003 0 3.22 0.001 [0 , 0] 1.1

grade 0.067 0.013 5.30 0 [0.043 , 0.093] 2.5

Table 17: Checking age + clsize its variables.

Variable Coefficient Std error T-value P-value Confidence interval VIF

intercept 10.011 0.150 66.67 0 [9.715 , 10.308] 383.6

top10 0.555 0.048 11.62 0 [0.461 , 0.649] 2.3

r11 25 0.471 0.035 13.30 0 [0.401 , 0.541] 2.0

r26 40 0.300 0.031 9.57 0 [0.238 , 0.241] 1.3

r41 60 0.190 0.026 7.17 0 [0.137 , 0.242] 1.2

llibvol 0.059 0.013 2.48 0.014 [0.013 , 0.119] 2.1

grade 0.066 0.027 4.57 0 [0.034 , 0.085] 2.5

Table 18: Checking llibvol model its variables.

Appendix H: variables for model 1, 2 and 3

Variable Coefficient Std error T-value P-value Confidence interval VIF

intercept 10.382 0.011 907.54 0 [10.359 , 10.405] 2.2

top10 0.597 0.045 13.20 0 [0.508 , 0.687] 2.0

r11 25 0.509 0.032 15.66 0 [0.455 , 0.573] 1.6

r26 40 0.318 0.031 10.25 0 [0.257 , 0.380] 1.2

r41 60 0.204 0.026 7.78 0 [0.152 , 0.256] 1.2

grade 0.066 0.013 5.10 0 [0.040 , 0.092] 2.4

Table 19: Model 1 its variables.
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Variable Coefficient Std error T-value P-value Confidence interval VIF

intercept 10.74 0.036 294 0 [10.666 , 10.810] 18.2

rank -0.004 0 -12.8 0 [-0.004 , -0.003] 2.6

libvol 0.0002 0 3.9 0 [0 , 0] 1.7

grade 0.059 0.015 4.1 0 [0.030 , 0.088] 2.6

Table 20: Model 2 its variables.

Variable Coefficient Std error T-value P-value Confidence interval VIF

intercept 9.364 0.322 29.1 0 [8.728 , 9.999] 725

lcost 0.108 0.035 3.1 0.002 [0.039 , 0.176] 1.1

libvol 0.0004 0 5.3 0 [0 , 0.001] 1.6

grade 0.166 0.016 10.2 0 [0.134 , 0.198] 1.6

Table 21: Model 3 its variables.
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